You have now reached the End of your
Quantum Childhood

It is time for you to graduate from quantum statics to
quantum dynamics

Up to now, all the quantitative calculations have been concerned with the
Hamiltonian functions which are independent of time---and therefore with
Hamiltonian operators H which are independent of time. In a real sense, all
that we have done so far is a mathematical exercise because when the
Hamiltonian is time-independent, nothing observable ever happens.

It may come as something of a shock to discover, after nine chapters, that
we have yet to get down to the business of predicting experiments in a
realistic, logically consistent way. Nonetheless, only with a thorough grasp
of the formal mathematics of the stationary states can we deal with time
varying Hamiltonians. As we shall see, only with the aid of the familiar
orthonormal eigenfunctions can the time-dependent wave equation be made
tractable.

This textbook seeks primarily to teach what quantum mechanics is, and not
to explore the intriguing (and very important) byways of philosophical
interpretation. We have diverged from this principle here only to highlight
the great importance of time-dependent calculations. Even though it comes
late in the textbook it is, in a sense, the very heart of the theory. We shall
be content to limit time-dependent calculations to only one or two of the
theory’s most simple applications, since these will suffice to illuminate the
important concepts.

Sherwin 239-241

The probability current ran swiftly out of the heart of quantum mechanics, bearing us down towards observation and
measurement with twice the speed of our upward progress .....
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5.6. Time-Dependent Perturbation Theory 325

inhomogeneous electric field. Such an electric field separates |S) from | A)
in much the same way as the inhomogeneous magnetic field in the Stern-
Gerlach experiment separates | +) from | —). A pure beam of |A) then
enters a microwave cavity tuned to the energy difference E4— Eg. The
dimension of the cavity is such that the time spent by the molecule is just
(w/2)h/y. As a result we stay in the first emission phase of Figure 5.4; we
have |A) in and |S) out. The excess energy of |A) is given up to the time-
dependent potential as |A) turns into |S) and the radiation (microwave)
field gains energy. In this way we obtain Microwave Amplification by
Stimulated Emission of Radiation, or MASER.

There are many other applications of the general time-dependent
two-state problem, such as the atomic clock and optical pumping. In fact, it
is amusing to see that as many as four Nobel Prizes in physics have been
awarded to those who exploited time-dependent two-state systems of some
form.*

5.6. TIME-DEPENDENT PERTURBATION THEORY

Dyson Series

With the exception of a few problems like the two-level time-depen-
dent problem of the previous section, exact solutions to the differential
equation for c,(z) are usually not available. We must be content with
approximate solutions to (5.5.17) obtained by perturbation expansion:

,()=cP+cP+cP+ -, (5.6.1)
where ¢, ¢, ... signify amplitudes of first order, second order, and so on

in the strength parameter of the time-dependent potential. The iteration
method used to solve this problem is similar to what we did in time-inde-
pendent perturbation theory. If initially only the state i is populated, we
approximate ¢, on the right-hand side of differential equation (5.5.17) by
¢®=§  (independent of ¢) and relate it to the time derivative of c{V,
integrate the differential equation to obtain ¢V, plug ¢ into the right-hand
side [of (5.5.17)] again to obtain the differential equation for ¢{?, and so on.
This is how Dirac developed time-dependent perturbation theory in 1927.
Instead of working with ¢, (¢), we propose to look at the time
evolution operator U,(¢, t,) in the interaction picture, which we will define

later. We obtain a perturbation expansion for U,(¢, t,), and at the very end

*Nobel Prize winners who took advantage of resonance in the two-level systems are Rabi
(1944) on molecular beams and nuclear magnetic resonance; Bloch and Purcell (1952) on B
field in atomic nuclei and nuclear magnetic moments; Townes, Basov, and Prochorov (1964) on
masers, lasers, and quantum optics; and Kastler (1966) on optical pumping.
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(Sec. ) THEORY - 245

The sum of terms on the extreme left equals, term by term, the sum of terms
on the extreme right, so that these two parts of [10-10] cancel. Multiplying the
rest of [10-10] by W'2.*, integrating with respect to the spatial coordinates dr,
and using the orthogonality of the ¥'2’s,

dt ﬁ n=1

Gan0=—1 % a0 [ Vi H ¥R [10-11

wherem =1,2,3,4, ---

This is the basic law of time-dependent perturbation theory.|It gives the rate
of change of the mth component of the expansion [/0-9], which describes the
true, time-varying wave function of the system. The rate of change of the
amplitude a,, depends upon the magnitude of the other amplitudes and also

upon a set of matrix elements, f‘P'?,,* H'Y'} dr, which “connect,” by means of

H’, the pure state ¥'2 with each of the other pure states ¥'9.3

We must visualize a vibrating system that has many modes or pure vibra-
tions excited simultaneously. The time-dependent operator H’ causes the
amplitude of each of the pure vibrations to change in some definite manner.
Some will increase with time and others must decrease—since at all times

2,:‘ ara, = 1, and any amplitude can increase only at the expense of some, or
all, of the others.

The fundamental equation [10-11] looks deceptively simple. It stands for
a whole set of equations (in general, an infinite set) each of which has a large
number of terms (in general, an infinite number). We write out these equations
(in part) to provide a better appreciation of their nature.

—? %‘12alf‘l"g*H"ngr—f—azfqu*H"Pngﬁ— e +akflyg*H'\F?cd”+ T
_? E]zzzal f‘P‘g*H'\P’?d‘r—{—az flpg*H“Pgd'r—}— s +akng*H’W2d7+

*fci%'c:alf‘lf,?*H"P"}dr—[—az f‘F,‘g*H"ngT+ +akf‘F2*H"F,‘2dT+
1

[10-12

31If, in addition to H® H contains a time-independent term H ‘(space) as well as a time-
dependent term H’(space, time), one first applies time-independent perturbation theory to get
the corrected wave functions, and then uses these wave functions in the time-dependent theory.
This process is illustrated below in Sec. 10.5,
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(Sec. 1) THEORY - 247

We equate separately each power of A. For zero order,
(d/dr) a} = 0; (djdr)al = 0; - ; (dJdt)a) =0; -~ [10-15

That is, if the time-dependent part of the Hamiltonian is zero, then each am
(which determines the amplitude of the component ¥'2 of the complete wave
function W), if determined at one time, is unchanged for any other time.
This same result, for the time-independent Hamiltonian, was obtained in
Chapter 7.

Equating all terms of A!, we have the set of equations

ki da’
—1 g f PO POt g0 f W ) TR f T 57 TR

k da,

T g f WO Y o f WO Wt - f Tl L P AT

— g f WO PO 4 09 f WO WU - f WO g .

l

[10-16

This set of approximate equations differs from the exact set [10-12] by the

presence, on the right, of the constant zero-order coefficients a2 and by the

presence, on the left, of the corrections, a},, to the zero-order coefficients a°.

Ihe ax’s are merely the imitial conditions. They measure the intensity of vibra-
tion of all of the modes of the unperturbed system that are needed to form
the actual wave function at ¢ = t,. The equations [I0-16] give the growth or
decline of the amplitude of vibration of each of the natural modes of the system.
Since H’ is assumed to be small, the corrections to the amplitudes, a,,, are
also small. Thus, although all the vibrations can either grow or decrease as
time proceeds, the changes from their initial values will not be very large.
One speaks of a typical mode of vibration, or “proper” vibration (such
as that represented by ¥, as being “‘connected,” via H’, to each of the other
modes. The exact equation [10-12] shows that, as time proceeds, the state e

“feeds amplitude” into the state W9 at a rate given by a, | ¥O* H' ¥,
1 y 1

and that the reverse process goes on at a rate given by a, f WO H'WO dr.

This is a completely continuous process. The perturbation H' acts constantly to
reshuffle the degree of excitation of the modes. If it is suddenly terminated the
system remains, thereafter, with exactly constant amplitudes for each proper
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